INTRODUCTION The information contained in this document is intended solely for Challenge trained service technicians. There may be situations that are not covered by this manual. The information contained in this manual is to guide a technician to possible repair solutions. This manual is to be used in conjunction with the TITAN 200 instruction and parts manual P/N F-200 (A).

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2
GENERAL INFORMATION .. 5
ELECTRICAL SPECIFICATIONS .. 5
MACHINE DIMENSIONS .. 5
MACHINE REVISIONS .. 6
TITAN MAIN BOARD REVISIONS .. 6
CLAMP DAMPENER ASSEMBLY MOUNT REVISION .. 6
MANUAL MISPRINT .. 6
SINGLE CUT BUTTON REVISION .. 6
HYDRAULIC PUMP REVISION ... 6
MANIFOLD SEAL REVISION ... 6
BACKGAUGE FUSE REVISION .. 6
FRONT GUARD INTERLOCK SWITCH REVISION ... 6
GENERAL HYDRAULIC INFORMATION .. 7
HYDRAULIC FLUID CHANGE... 7
PRESSURE GAGE ... 7
OPERATOR SETTING CLAMP PRESSURE .. 7
PRELIMINARY VALVE SETTING ... 7
VALVE INFORMATION .. 7
SOFTWARE REVISIONS ... 8
ERROR CODES DESCRIPTIONS .. 10
ERROR MESSAGES THAT DON’T REQUIRE A FLOW CHART .. 10
ERROR MESSAGES THAT REQUIRE A FLOW CHART .. 11
SENSOR DATA ABBREVIATIONS AND MEANINGS ... 12
TITAN 200 TEST & ADJUSTMENT PROCEDURES ... 13
TESTING DOWN VALVE COIL MAGNETISM .. 13
TESTING ANY HYDRAULIC VALVE SPOOL OPERATION ... 13
SEQUENCE OF ADJUSTING HYDRAULIC PRESSURES ... 13
TESTING AND ADJUSTING PROX SENSOR .. 13
MANUALLY ACTIVATING THE HYDRAULIC MOTOR .. 14
TESTING AND REPAIR OF BACKGAUGE BRAKE RESISTOR ... 14
TESTING ENCODER ... 14
TESTING ENCODER/BACKGAGE ACCURACY ... 14
TESTING ENCODER CABLE ... 15
TESTING INPUTS ON MAIN CIRCUIT BOARD ... 15
TESTING MAIN BOARD OUTPUT and OUTPUT DEVICES ... 15
INSTALLATION AND ADJUSTMENTS FOR OF THE KNIFE LATCH ASSEMBLY: 16
TEST BACKGUAGE ARMATURE ... 16
FRONT GUARD INTERLOCK SWITCH ADJUSTMENT ... 16
DISASSEMBLY OF SOLENOID COIL CABLE CONNECTOR .. 17
TESTING AND MANUALLY ACTIVATING KEYBOARD ... 17
EE-2807 MAIN BOARD .. 18
BASIC MACHINE SCHEMATIC .. 19
EE-2807-1 .. 20
Basic hydraulic schematic ... 21
CHAMPION and TITAN CONSOLE PROGRAM MAP .. 23
Hydraulic Motor didn’t start ... 24
Positioning error .. 25
Clamp/Knife down ... 26
Clamp stuck down ... 27
Slow backgauge movement to end of table.. 28
Hydraulic up failure .. 29
Knife down failure .. 30
Sequence error .. 31
Knife at both limits .. 32
Clamp down failure .. 33
Backgauge failure ... 34
Shorted key error ... 35
“Encoder wires 9 and 10 are reversed” or “Backgauge direction reversed” 36
Knife latch failure 1 .. 37
Knife latch failure 0 .. 38
Hydraulic latch error 1 .. 39
SINGLE OPERATOR
Do not operate with more than one person.

SHOCK HAZARD
Disconnect power before removing cover.
Replace cover before operation

SHOCK HAZARD
Disconnect power before removing cover.
Replace cover before operation

HAZARD AREA
Disconnect power before cleaning, servicing or making adjustments not requiring power. Do not alter safety guards or devices, they are for your protection. Replace all guards, do not operate with any guards removed.
GENERAL INFORMATION

ELECTRICAL SPECIFICATIONS

The cutter requires a 208/230vac 15-amp service. The cutter has a power cord, which requires a NEMA 6-15R or 6-20R receptacle. The proper way to test voltage is from before power up through a complete cycle. The voltage must be tested at the main fuse holders. The meter used must have a reaction time of at least 100ms or a low voltage record function. A low quality meter will not respond fast enough to give a true minimum voltage reading. Low voltage to the cutter will blow the main fuses. When the voltage drops, the 24vac (solenoids) and 5vdc (computer) will have problems. The low limit is 190 vac using the above test. The high limit is 245 vac.

The voltage for the power panel can be matched to the measured incoming voltage. Reposition the jumper located in the center of the terminal strip. **Do not remove any wires.**

All Titan 200 s/n 981388 and down are 230vac only. If the voltage drop are 210vac or below during a cut, a buck/boost transformer, p/n K-2834, is required. Note: The buck/boost can also be rewired to buck voltage 250vac down. Call Challenge for rewiring. Always check the serial number tag to determine the proper voltage range.

MACHINE DIMENSIONS

The Net weight is 755 LB (342kg). The height is 53” (135cm), length is 49” (124cm), and width is 36” (91cm). Removal of the table, front guard and treadle will allow the machine to go through a 31 1/4” (79.4cm) door way.
MACHINE REVISIONS

TITAN MAIN BOARD REVISIONS

The main circuit board, EE-2762, was changed to EE-2762-1. When using an EE-2762-1, the H-10 and H-11 must **not** be connected.

Titan 200 cutters above s/n 971103 use EE-2807, the LCD display is no longer back lit. On EE-2807, the H-10 jumper must be connected and H-11 jumper must **not** be connected. Both black plastic jumpers are located near the F3 fuse. The EE-2807 can **not** be used for replacement a EE-2762 and EE-2762-1.

The EE-2807-1 is a direct replacement for the EE-2807. The H-10 jumper must be connected and the H-11, 12, 13, 14 must **not** be connected.

CLAMP DAMPENER ASSEMBLY MOUNT REVISION

The upper mounting stud for the clamp-dampened cylinder has been changed to a three-piece mounting. The first production Titan with the change is s/n 981319, (July-98). The part numbers are H-6938-416 (1/4x20x1”set screw), E-1152-68 (1/4x20x1”hex spacer), H-6918-412 (1/4x20x1½” cap screw). If the stud is broken, it can be removed with an “screw extractor ”. Install the set screw so ½” is extended out from the frame. Tighten the spacer onto the setscrew. Slide the cap screw into the top hole of the dampened then tighten screw and damper to the spacer. The fluid in the damper is 100# hydraulic fluid, which is used in the reservoir of the pump.

MANUAL MISPRINT

Titans s/n 971103 and up main board yellow IN7 input, for hydraulic latch will never light. The Sensor Data input “HYDLAT” will function. Titans s/n 971102 and down the hydraulic latch relay was located on a separate relay board.

SINGLE CUT BUTTON REVISION

The green light button was changed to a heavier duty non-lighting style. This heavy duty button was used beginning with serial number 981342. Early machines require conversion kit K-2874.

HYDRAULIC PUMP REVISION

The first machine with the revised motor/pump is s/n 971157 (Dec 97). Replacement pump/motor number is H-220-5. Replacement motor/pump units have a different mounting bolt pattern. It is acceptable to use only two mounting bolts. Parts are not interchangeable from earlier to later units. The manifold and valves are not affected.

MANIFOLD SEAL REVISION

Hydraulic manifolds stamped with an “-A” in the top corner use a 7/8 ” O- ring. The two O- rings are located between the manifold and the pump. The machines affected are s/n 981271 (Sept-98) to s/n 991570 (Mar-99).

BACKGAUGE FUSE REVISION

A kit is available to keep the “F1” fuse from blowing. The kit number is K-2908. A 5A (SB) fuse is being added. The first Titan 200 with the new fuse is s/n 991734, August 99. It is located on the revised circuit board (EE-2807-1) and is labeled “FL”.

FRONT GUARD INTERLOCK SWITCH REVISION

The interlock switch mounted on either side of the front opening was changed by the manufacturer. The first machines affected were built late April 2000. The replacement switch is part number E-2457-6, also six E-1214-65, ¼ “quick disconnects are needed (per switch).
GENERAL HYDRAULIC INFORMATION

HYDRAULIC FLUID CHANGE

The oil should be changed every 1000 hours or once a year. Use 100 weight (ISO VG 100) hydraulic oil only. An electric hand drill pump can be used to remove the oil from reservoir through the filler hole. The hydraulic pump does have a strainer and magnet. It is recommended as part of the regular oil change that the reservoir be removed to wipe the interior of the tank clean. The O-ring seal may be reused if it is not damaged (p/n is S-1810-37).

PRESSURE GAGE

The gage supplied with the Titan is filled with clear glycerin. If the gauge liquid turns yellow, hydraulic fluid has leaked into the gauge and it must be replaced. If the rubber top seal leaks, replace the gage (p/n 8P-629-3).

OPERATOR SETTING CLAMP PRESSURE

The clamping pressure range is 400 to 800 psi. Turning the clamp pressure reducer cartridge cw increases pressure and ccw decreases pressure. One turn of the adjustment screw equals approximately 75 psi. Don’t adjust below 400 psi. the because clamp and knife will be out of sequence.

PRELIMINARY VALVE SETTING

The four adjustable cartridge valves in the hydraulic system can be preset manually to an approximate setting. These adjustments should be done only as a last resort. The valves are not interchangeable. Each valve is to be turned in all the way (cw) then turned out (ccw) a specific amount of turns. Main pressure cartridge 4 turns. Knife down sequence 3 turns. Clamp up sequence 1 turn. Clamp pressure reducer (adjustable by the operator) 4 turns (800 psi). Use the hydraulic pressure setting section in the manual for final adjustment.

VALVE INFORMATION

Listed is general information for testing and checking.

<table>
<thead>
<tr>
<th>VALVE</th>
<th>CHALLENGE NUMBER</th>
<th>MANUFACTURES NUMBER</th>
<th>SPRING TENSION</th>
<th>INNER SPOOL MOVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN SYSTEM</td>
<td>HH-304-1</td>
<td>RV1-10-S-0-18/</td>
<td>HEAVY</td>
<td>¼” (6MM)</td>
</tr>
<tr>
<td>DOWN VALVE</td>
<td>H-200-2</td>
<td>SV1-10-4-0-00</td>
<td>LIGHT</td>
<td>1/8” (3MM)</td>
</tr>
<tr>
<td>CL. UP SEQ.</td>
<td>H-203-6</td>
<td>RV3-10-S-0-36/</td>
<td>MEDIUM</td>
<td>¾” (6MM)</td>
</tr>
<tr>
<td>CLAMP PRESS</td>
<td>H-203-13</td>
<td>PRV1-10-S-0-12/</td>
<td>MEDIUM</td>
<td>¾” (6MM)</td>
</tr>
<tr>
<td>KN. DN. SEQ.*</td>
<td>H-203-7</td>
<td>PSV2-10-S-0-12/</td>
<td>MEDIUM</td>
<td>1/8” (3MM)</td>
</tr>
<tr>
<td>ELEC. CL.**</td>
<td>H-203-33</td>
<td>EPRV1-5824-14</td>
<td>LIGHT</td>
<td>3/16” (5MM)</td>
</tr>
</tbody>
</table>

* KN. DN. SEQ. Used two different valves
** Cartridge comes with coil E-1069-19
SOFTWARE REVISIONS

Titan 200 with front guard using EE-2762 circuit board and EE-1766-41 software.

1.0 Original software.
1.1 Increased knife latch timing.
1.2 False Camp Plate limit was 1.750; changed it to 1.875.
1.3 This revision contains all of the languages. In fraction mode corrected positioning problem.
1.4 Increased timing between scr and brake turning on and off. This is performed at the beginning
 of each zero cross.
1.5 Enables the Preset interrupt during the zero-cross. Allowed maintenance mode access during
 preset screen. Changed send routine for better positioning accuracy.
1.6 Added noise protection to prevent erroneous backgauge control touch pad movement. This
 error causes the machine to show actual backgauge position instead of the "sent to" value.
1.7 Allow accuracy adjust to be set in mm. Fixed a backgauge creep problem that would occur if
 the foot pedal was pressed during a send. Note: This is the highest possible revision software
 the for EE-2762 circuit board.

 New Board, EE-2807 Starting at s/n 971102

1.9 Added a delay in the backgauge routine to prevent fuses from being blown in the back-
 gauge circuit when using the slide pot in the center or bottom edge.
2.0 A) Added Challenge logo to sleep screen.
 B) Added electric clamp option in the “diagnostic” menu.
 C) Immediately position to 5” after preset.
2.1 Changed reverse limit from 20.050 to 20.030 to prevent bumping in the back.
2.2 A) Electronic clamp pressures range adjustable in the DIAGNOSTIC menu.
 B) REPOSITIONING is added as an option in the parameters menu. This allows the
 machine to reposition automatically from a sent position if the back gauge moves back
 .005” or more.
 C) When entering data in a job, if a math function key is pressed, the operation assumes the
 previous data, not the backgauge position.
2.3 Forced PUSHOUT if the forward movement is < .005”.
2.4 Allow ELECTRIC CLAMP option to be on.
2.5 If the backgauge is moving at a high speed, the brake is applied near the front and
 back to prevent bumping.
2.6 A) Added auto memory initialization for new boards.
 B) Added memory test to initialization routine.
 C) Correct translation errors.
2.7 A) Improved positioning time by shortening the slow down distances and making the
 slow down distance self-adjusting between .2” and .75”.
 B) Added input status to the end of several error messages.
 Knife Latch Failure 1 = Latch disengaged when it should be engaged
 Knife Latch Failure 0 = Latch engaged when it should be disengaged
 Hyd Latch failure 1 = Latch Relay is off When it should be on.
 Hyd Latch failure 0 = Latch Relay is on when it should be off.
2.8 A) Adjust for new 1/8 hp back gauge motor
 B) Service message reads “Lubricate Machine”
 C) Lubricate alarm frequency twice knife alarm count
 D) Attempt to reduce F1 blowing computer responds quicker to the backgauge movement
 Commands
2.9 Improved electronic clamp pressure routine to reducing changing “CP” number.
Titan 200 with cut buttons (N.C.) using EE-2807 circuit board and EE-1766-42 software
The revision descriptions for 2.0 and on is the same as EE-1766-41

Titan 200 with cut buttons (N.O.) using EE-2807 circuit board and EE-1766-50 software
2.3 Original software.
2.5 If the backgauge is moving at a high speed, the brake is applied near the front and back to prevent bumping.
2.6 A) Added auto memory initialization for new boards.
 B) Added memory test to initialization routine.
 C) Correct translation errors.
2.7 A) Improved positioning time by shortening the slow down distances and making the slow down distance self-adjusting between .2” and .75”.
 B) Added input status to the end of several error messages.

Knife Latch Failure 1 = Latch disengaged when it should be engaged
Knife Latch Failure 0 = Latch engaged when it should be disengaged
Hyd Latch failure 1 = Latch Relay is off when it should be on.
Hyd Latch failure 0 = Latch Relay is on when it should be off.
ERROR CODES DESCRIPTIONS

ERROR MESSAGES THAT DON’T REQUIRE A FLOW CHART

<table>
<thead>
<tr>
<th>ERROR</th>
<th>EXPLANATION</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result is Negative</td>
<td>Math operation result was negative</td>
<td>Press Clear key</td>
</tr>
<tr>
<td>Data out of Range</td>
<td>Send position beyond forward or reverse limits</td>
<td>Press Clear key</td>
</tr>
<tr>
<td>Send Canceled</td>
<td>Back gauge in motion and a console key was pressed</td>
<td>Press Clear key then Send key to complete movement</td>
</tr>
<tr>
<td>Number Outside Limit</td>
<td>Send position beyond forward or reverse Limits</td>
<td>Press Clear key</td>
</tr>
<tr>
<td>Back gauge at Limit</td>
<td>Back gauge position at either end of table</td>
<td>Move back gauge in opposite direction</td>
</tr>
<tr>
<td>Memory Locked</td>
<td>Tried to change a locked channel</td>
<td>Press Clear key</td>
</tr>
<tr>
<td>Next Channel Locked</td>
<td>Linked channel locked</td>
<td>Press Clear key. Move locked channel to another. location</td>
</tr>
<tr>
<td>Sharpen Knife</td>
<td>Operator sets knife count for sharpening</td>
<td>Clear message: Enter Maintenance, Enter Parameters, Enter Knife count Enter clear count. Press exit 4 times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change knife count Enter Knife Count Enter Knife Alarm. Enter number of cycles Press exit 4 times</td>
</tr>
<tr>
<td>Lubricate Machine</td>
<td>The relubrication message has been activated</td>
<td>Clear message: Enter Maintenance Enter Parameters, Enter Knife count Enter clear lube. Press exit 4 times</td>
</tr>
<tr>
<td>Checksum Error</td>
<td>Defective EPROM chip.</td>
<td>Replace chip</td>
</tr>
<tr>
<td>Memory Failed</td>
<td>Memory failed</td>
<td>Replace main board</td>
</tr>
</tbody>
</table>
| Hyd latch error 0 | Board mounted relay failed to turn off Sensor data, “hydlat” didn’t change from 0 to 1 Occurs when pump motor turns off | Replace main board EE-2807-1
Errors (No Message) That Require a Flow Chart

<table>
<thead>
<tr>
<th>Error</th>
<th>Explanation</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp stuck down</td>
<td>Upward movement of spring return clamp Was not released from mechanical bind.</td>
<td>See flow chart page 27</td>
</tr>
<tr>
<td>Slow backgauge movement</td>
<td>Main board is sensing the preset is always activated.</td>
<td>See flow chart page 28</td>
</tr>
<tr>
<td>Hydraulc motor didn’t start</td>
<td>Motor didn’t start at the beginning of a cut</td>
<td>See flow chart page 24</td>
</tr>
<tr>
<td>A continous beeping</td>
<td>Press CLEAR to stop alarm</td>
<td>See Positioning Error.</td>
</tr>
</tbody>
</table>

Error Messages That Require a Flow Chart

<table>
<thead>
<tr>
<th>Error</th>
<th>Explanation</th>
<th>Test Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyd up failure</td>
<td>Clamp failed to return up after 4 sec.</td>
<td>See flow chart page 29</td>
</tr>
<tr>
<td>Knife down failure</td>
<td>Knife failed to go down after 4 sec.</td>
<td>See flow chart page 30</td>
</tr>
<tr>
<td>Knife up failure</td>
<td>See Sequence Error or Knife at both limits</td>
<td>See flow chart page 31</td>
</tr>
<tr>
<td>Sequence error</td>
<td>Knife came down before clamp or Clamp came up before knife.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clamp up prox made while knife up prox unmade.</td>
<td></td>
</tr>
<tr>
<td>Knife at both limits</td>
<td>Knife up or knife down proximity sensor not switching or at the wrong time</td>
<td>See flow chart page 32</td>
</tr>
<tr>
<td>Positioning error</td>
<td>Back gauge missed programmed position by .005". Back gauge accuracy off by .010" when wand goes through preset sensor</td>
<td>See flow chart page 25</td>
</tr>
<tr>
<td>Clamp/Knife down</td>
<td>When in a program or send mode (Not manual backgauge mode)</td>
<td>See flow chart page 26</td>
</tr>
<tr>
<td></td>
<td>knife or clamp not up</td>
<td></td>
</tr>
<tr>
<td>Clamp down failure</td>
<td>Clamp did not come down at the start of a cycle</td>
<td>See flow chart page 33</td>
</tr>
<tr>
<td>Backgauge failure</td>
<td>Backgauge did not move after presetting</td>
<td>See flow chart page 34</td>
</tr>
<tr>
<td>Shorted key error</td>
<td>Any key (except backgauge slide) held on for longer than 90 seconds</td>
<td>See flow chart page 35</td>
</tr>
<tr>
<td>Encoder wires 9 and 10</td>
<td>Encoder wire pulse wire are backwards or backgauge power wires are backwards.</td>
<td>See flow chart page 36</td>
</tr>
<tr>
<td>Reversed</td>
<td>Typically this happens only on a table out installation.</td>
<td></td>
</tr>
</tbody>
</table>
Knife latch failure 1
Prox sensor on when should be off.
The pin should be in the disengaged position
i.e. pulled out from under knife bar.

Knife latch failure 0
Prox sensor off when should be on.
The pin should be in the engaged position
i.e. pushed under knife bar.

Hyd latch error 1
Board mounted relay failed to turn on
Motor will not start
Sensor data, “hydlat” didn’t change from 1 to 0

SENSOR DATA ABBREVIATIONS AND MEANINGS
The knife and clamp are at top of stroke with the hydraulic motor off and line light on.

<table>
<thead>
<tr>
<th>INPUTS/OUTPUTS</th>
<th>IDLE</th>
<th>DESCRIPTION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHSAFE (in)</td>
<td>0</td>
<td>R. H. safety switch or cut button</td>
<td>Inside right font cover</td>
</tr>
<tr>
<td>LSAFE (in)</td>
<td>0</td>
<td>L.H. safety switch or cut button</td>
<td>Inside left front cover</td>
</tr>
<tr>
<td>KNFLAT (in)</td>
<td>1</td>
<td>Knife latch proximity sensor</td>
<td>Left side of cutter opening</td>
</tr>
<tr>
<td>KYDLAT (out)</td>
<td>1</td>
<td>Hydraulic latch relay</td>
<td>Main board</td>
</tr>
<tr>
<td>KNFDWN (in)</td>
<td>1</td>
<td>Knife down proximity sensor</td>
<td>Lower right corner of knife bar</td>
</tr>
<tr>
<td>PRESET (in)</td>
<td>1</td>
<td>Preset sensor</td>
<td>Under left side of table</td>
</tr>
<tr>
<td>CUTSOL (out)</td>
<td>0</td>
<td>Cut Down valve</td>
<td>Solenoid on left side of hyd. manifold</td>
</tr>
<tr>
<td>UNLOAD (out)</td>
<td>0</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>KNLATSOL (out)</td>
<td>0</td>
<td>Knife latch solenoid</td>
<td>Left side of cutter opening</td>
</tr>
<tr>
<td>CLAMPUP (in)</td>
<td>1</td>
<td>Clamp up proximity</td>
<td>Top right corner of clamp (rear view)</td>
</tr>
<tr>
<td>HYDUP (in)</td>
<td>1</td>
<td>Clamp cylinder up proximity</td>
<td>Bottom of clamp cylinder</td>
</tr>
<tr>
<td>KNFUP (in)</td>
<td>1</td>
<td>Knife up proximity</td>
<td>Top left corner of knife bar</td>
</tr>
<tr>
<td>CUTBTN (in)</td>
<td>0</td>
<td>Single cut button</td>
<td>Green button on console</td>
</tr>
<tr>
<td>N.C.</td>
<td>0</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>HYDMOT (out)</td>
<td>0</td>
<td>Hydraulic motor relay</td>
<td>Right of main board</td>
</tr>
<tr>
<td>N.C.</td>
<td>0</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>LTLINE (out)</td>
<td>1</td>
<td>Line/table light</td>
<td>Two light bulbs above knife bar</td>
</tr>
<tr>
<td>CBTNLT (out)</td>
<td>0</td>
<td>Not used</td>
<td></td>
</tr>
</tbody>
</table>
TITAN 200 TEST & ADJUSTMENT PROCEDURES

TESTING DOWN VALVE COIL MAGNETISM

1. Remove the ¾” nut holding the coil to the valve.
2. Slide the coil away from the base of the valve ¼”.
3. The coil should move easily on the valve stem.
4. Make a cut.
5. If there is voltage and the coil is good, magnetism will move it back the ¼” to the base of the valve.
 If a screw driver blade is placed inside the center of the coil then cycle the cutter. If magnetism is felt
 the coil, cable and main board is good tested.

TESTING ANY HYDRAULIC VALVE SPOOL OPERATION

1. Remove the valve from the manifold. There isn’t trapped hydraulic pressure, some fluid will flow out.
 Always use a 1” box end wrench or deep well socket only on the hex on the valve. Never use an
 adjustable wrench or pliers to remove or install a valve.
2. Use a small rod to push in on the end of the valve that was in the manifold. The spool inside the valve
 must move smoothly in both directions. Each valve type has a different spring tension and some do
 not have springs at all. On adjustable valves, the spring tension can be lessened to help in testing spool
 movement. Loosen the jam nut then turn the allen screw CCW to reduce spring pressure. See General
 Hydraulic Information, ie Valve information for spring tension.
3. Check for damaged black “O” rings or white split Teflon spacers.
4. Check the manifold cavity for loose particles
5. Reinstall valve. It does not require excessive force to retighten the valve. Do not tighten over 40 FT
 LB of torque.
6. Typically, a valve that cannot adjust its pressure range is defective.

SEQUENCE OF ADJUSTING HYDRAULIC PRESSURES

Turn adjuster clockwise to increase pressure, counter clock wise to reduce pressure. Reference
F. 200 parts manual hydraulic schematic page for cartridge location.
1. Turn the clamp reducer valve (item 4), located on front face of blue manifold block, CW all the way.
2. Read main system pressure when clamp and knife are at the bottom of stroke. Adjust valve (item 11)
 on front of black pump to 1400psi.
3. Read knife down sequence pressure when clamp is at the table and the knife is moving down. Adjust
 front valve (item3) located on right face of manifold block to 900psi.
4. Read clamp up sequence when the knife is at top of stroke and the clamp is moving up. Adjust rear
 valve (item 1) located on right face of manifold block to 600psi.
5. Adjust clamp reducer valve, item 4, to a range of 400 to 800psi when clamp and knife are at the bottom
 of stroke.

TESTING AND ADJUSTING PROX SENSOR

1. Access the “SENSOR DATA “ menu in the console. The zero and ones to the right of the abbreviations
 will indicate changed status as the prox is activated.
2. Place a thin metal strip in front of sensor. The target area has four red squares in a block pattern.
 When the strip is placed in front of the sensor the red LED should turn on and the sensor data
 indicator should change.
3. The distance from the rectangular prox sensor to a moving part is typically .01” to .06”. The distance
 from the round prox sensor to a moving part is typically .01” to .125”.

13
MANUALLY ACTIVATING THE HYDRAULIC MOTOR

Pressing the manual pin on the motor relay will activate the motor. This will raise the clamp and knife to the full up position. The relay is located on the right side center of the electrical panel. Do not push the relay for longer than 3 seconds, the main fuses may blow!
1. S/N 971102 and down the relay is 1.5” x 3” and brown/black with a small button on the long side.
2. S./N 971103 and up the relay is 3” x 3” and black in color. Press the top white plastic piece down.

TESTING AND REPAIR OF BACKGAUGE BRAKE RESISTOR

1. Resistor is white, 2” long by 3/8” square (may be two side by side), located on the right end of main board EE-2807-1. The resistor is next to the BRK, SCR, and DIR red LED’s.
2. Measure resistance from one lead to the other. A reading of 5 ohms means the resistor is good. A reading of infinity means the resistor is open and must be replaced.
3. A pair of 10 ohm, 10watt resistors can be purchased from Radio Shack, # 271-132.
4. Cut the defective resistor leads at the end of the resistor. This will leave a lead from the board to solder too.
5. Apply silicon sealant to the bottom of the new resistor.
6. Lay the new resistors side by side (with silicone sealant in between) then wrap one lead around the other lead and solder.
7. Place new resistor on the board then cut the leads to overlap the leads on the board by 3/8”.
8. Solder resistor leads to board leads.

TESTING ENCODER

Measure voltages on the screw heads of the EE-2807-1 header. If the voltages are correct, the EE-2807 is defective. The test gives a general condition of the encoder as it impossible to count all encoder pulses. If the voltages are not correct, see “TESTING CABLE”. If cable is good, the encoder is defective. Turn motor pulley very, very slowly when testing A and B pulse.

<table>
<thead>
<tr>
<th>Cable connector</th>
<th>Header</th>
<th>Function</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (black)</td>
<td>H2-4</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>20 (red)</td>
<td>H2-3</td>
<td>“+” voltage</td>
<td>5 vdc, power</td>
</tr>
<tr>
<td>17 (white)</td>
<td>H2-1</td>
<td>“A” pulses</td>
<td>toggles 5 & 0 vdc</td>
</tr>
<tr>
<td>19 (green)</td>
<td>H2-2</td>
<td>“B” pulses</td>
<td>toggles 5 & 0 vdc</td>
</tr>
</tbody>
</table>

TESTING ENCODER/BACKGAUGE ACCURACY

This test is preformed when the accuracy alarm is activated or there is a question of backgage point to point accuracy.
1. Remove the backgage pulley cover.
2. Turn off the REPOSITIONING option in the parameter menu.
3. Move the backgage to rear of the table. Manually turn the leadscrew pulley back til the backgage stops. Write down the dimension shown on the display.
4. Move the backgage only with the manual slide control to at least 6 different positions, never coming forward of 7” (178mm).
5. Repeat step 3. The two numbers should match within (+ or -) .002.
6. If the numbers match the accuracy problem is in the loading of the paper, backgage squaring or accuracy adjutment. If the numbers do not match the encoder, encoder cable or main board may be defective.
TESTING ENCODER CABLE

1. Unplug the cable connector at encoder. Measure voltages at the cable connector.
2. If voltages are correct, cable (E-2534-1) and main board (EE-2807) are good.
 - If voltages are not correct, go to step 3.
3. With the cable connector still unplugged at encoder, measure the voltage at the header screws.
 - If voltage is correct the main board is good and the cable is defective.

<table>
<thead>
<tr>
<th>Cable connector</th>
<th>Header</th>
<th>Function</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (black)</td>
<td>H2-4</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>20 (red)</td>
<td>H2-3</td>
<td>“+” voltage</td>
<td>5 vdc</td>
</tr>
<tr>
<td>17 (white)</td>
<td>H2-1</td>
<td>“A” pulses</td>
<td>5 vdc</td>
</tr>
<tr>
<td>19 (green)</td>
<td>H2-2</td>
<td>“B” pulses</td>
<td>5 vdc</td>
</tr>
</tbody>
</table>

REPLACEMENT EE-2807 & EE-2807-1 CIRCUIT BOARDS

1. Transfer all fuses from the original board to the new board. The FL fuse (EE-2807-1 only) will not have to be transferred. Fuse clips may have to be tightened (squeezed together) before reinstalling a fuse.
2. Transfer the EPROM from original board to the new board. Tip: Before removing old EPROM note position of locating notch on the chip.
3. The H-10 link must be connected, otherwise “Hydraulic Latch Error” will be displayed. The H-11 link must not be connected, otherwise the display and keyboard will not work.
 - On EE-2807-1 links H-12, H-13, H-14 should not be made.
4. Test and adjust the back gauge accuracy.

TESTING INPUTS ON MAIN CIRCUIT BOARD

Inputs on the main board, EE-2807-1, can be manually activated. If the LED does not light nor the sensor data input change, the main board EE-2807 is defective. The sensor data menus are based on the the power on, knife/clamp in the up position and the hydraulic motor off.

1. Remove wire for the input to be tested from green header.
2. Touch one end of 12” insulated jumper wire to any 64 wire terminal.
3. Touch the other end of the jumper wire to the screw head where input wire was attached.
4. If yellow LED lights, then the sensor or wiring is defective. If the yellow LED or the sensor data input doesn’t change the main board, EE-2807, is defective.

TESTING MAIN BOARD OUTPUT and OUTPUT DEVICES

Outputs can be manually activated, except for the backgauge motor. The red output LED’s only indicates computer commands, not actual operation of the output device.

Connect an insulated jumper wire from the 24vac supply (wire #33) then touch the other end of the wire to the to the screw head where output device wire is attached. The desired output device should turn on i.e., solenoid, relay or light. (Note: An error may be displayed). If the device turns on manually, the main board, EE-2807 is defective. If the device does not turn on, the device, wiring or F2, F3 is defective.

Output voltage can be measured. Check the voltage between at the main board output wire (?) and wire #35 when the machine is activated. NOTE: An unloaded output will measure a static voltage. The voltage will disappear or change when a load is applied.
TESTING AND LEVELING THE CLAMP
1. Remove the cut stick, false plate clamp if installed. Clean the bottom of the clamp.
2. Place a 2 1” x 22” strips of paper lengthwise from under the clamp (right and left), to the front edge of the table.
3. Close guard, if equipped, and make a cut.
4. When the clamp is at the table and the knife is swinging down, pull on the paper strips.
5. If the clamp is parallel, both strips will be held. If one of the strips is loose the clamp will have to be adjusted.
6. The adjustment is made by turning the nuts on the top and bottom of the pull clamp pull down rods.
 Adjust the side that does not hold the strip. Make only 1/8-turn adjustments. Loosen the upper nut.
 Tighten the lower nut to lower the high side.
7. Repeat steps 1 through 7 until both strips are held.

INSTALLATION AND ADJUSTMENTS FOR OF THE KNIFE LATCH ASSEMBLY:
1. The retracted position of the knife latch pin is adjusted before installation. The end of the pin should be flush with the face of the block that it slides through (the plastic screw head does not matter). Check the position of the pin by pushing in the solenoid plunger (not the lever) to bottom of its travel.
 a). Loosen the mounting screws of the solenoid.
 b). Push in the solenoid plunger to bottom of its travel.
 c). On the 41120-1 version slide the solenoid with plunger pushed in so the knife latch pin end is flush with the block. On the 41120-3 version slide the solenoid with plunger pushed in so the plastic screw on end of the latch pin is flush with the block.
 d). Retighten the solenoid mounting screws.
2. The latch assembly mounting plate should be visually parallel to the knife bar.
3. The top of the knife latch pin should be 1/64” (0.3mm) to 1/32” (0.5mm) below the knife bar. This clearance is set only when the knife is in the full up position (see manually section “Activating the hydraulic motor”). The latch plate mounting screws will have to be loosened slightly. The height adjusting screw is located at the bottom of the plate. Turn the screw CW to raise and CCW to lower the plate then tighten the jam nut. Tighten the mounting plate screws.
 INSTALLATION TIP: The top cover of the cutter should be tilted forward and the left front table side guide should be removed for easier access. Table side guide mounting screws can be removed through the two side left access hole covers using the knife bolt wrench.
4. The proximity sensor should be 1/64” (0.5mm) to 1/32” (1.5mm) from the solenoid lever arm. The sensor has a red four-point target for activation.

TEST BACKGUAGUE ARMATURE (Procedure measuring backgauge motor for opens and shorts)
1. Turn power off.
2. Unplug the H1 connector on the main board and remove motor cover. Measure the resistance between wire 45 and 46. Rotate motor pulley in small increments (one complete turn) while reading the resistance at each incremental stop. The nominal resistance should be 12 ohms. Values above 12 indicate open and values below indicate a short in the armature.
3. Unplug the H1 connector on the main board. Measure the resistance between wire 45 and 46 to the unpainted part of the motor case. A reading of infinity (open) is correct. A reading less than infinity indicates a short.

FRONT GUARD INTERLOCK SWITCH ADJUSTMENT
1. Remove the interlock switch bracket assembly from the top cover.
2. Bend the strap, near the mounting screws, so it is parallel to the face of the interlock switch and has .015” clearance to the tip of the plunger.
3. Reinstall the bracket on the top cover. Open the front guard then adjust the interlock switch bracket assembly so the strap is flat against the cover but not depressing the plunger.
DISASSEMBLY OF SOLENOID COIL CABLE CONNECTOR
1. Remove screw completely from the center of square connector then remove connector from coil.
2. Unscrew cable strain relief nut.
3. Turn connector upside down. Place a small screwdriver in the narrow slot in one of the corners of the red center piece then pry it out. The cable will need to be pushed in.
4. Voltage can then be measured between the wires.

TESTING THE DISPLAY CONTRAST
The LCD display uses 19 Volts DC for the contrast adjustment. The voltage is produced on the main circuit board, EE-2807. The contrast voltage on the main board can be measured from header H2 pin 7, to the non-line end (anode) of the diode located next to the H8 header. Use the left drawing below for (d) diode location.

EE-2807-1

[Diagram]

The level of contrast is adjusted by a potentiometer located on the back of the console. The voltage is measured on the keyboard interface board located under the console cover. Use the above right drawing for reference. Use the left end of the resistor (shown with a "C") as the common. The voltage at leg 3 on the potentiometer should read 19vdc. The voltage at "2" on the potentiometer will have a range of 9vdc to 19vdc. Nominal operational voltage is approximately 12vdc.

Conclusions: No voltage between diode and H7-2, defective EE-2807.
No voltage between "C" and # 3, defective ribbon cable EE-2855-2.
No voltage between "C" and # 2, defective EE-2764.
All voltages good, defective LCD display, defective EE-2758-1.

TESTING AND MANUALLY ACTIVATING KEYBOARD
1. Remove the metal cover behind the console.
2. Disconnect blue tipped ribbon cable from interface board.
3. Turn power on.
4. Use a jumper wire shorting the exposed pins to manually activate a key function. Use the diagram and key list below.
5. If the console shows activity by manually jumping the pins, the keyboard is defective, 43002.

<table>
<thead>
<tr>
<th>KEY</th>
<th>PIN</th>
<th>KEY</th>
<th>PIN</th>
<th>Backgauge Slide Key</th>
<th>Interface board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>5 to 11</td>
<td>Send</td>
<td>5 to 13</td>
<td>Pin 1 to 3</td>
<td>1K ohms fixed</td>
</tr>
<tr>
<td># 1</td>
<td>9 to 13</td>
<td># 2</td>
<td>8 to 13</td>
<td>Pin 1 to 2</td>
<td>1 K ohms variable*</td>
</tr>
<tr>
<td># 3</td>
<td>7 to 13</td>
<td># 4</td>
<td>9 to 12</td>
<td>Pin 2 to 3</td>
<td>1 K ohms variable*</td>
</tr>
<tr>
<td># 5</td>
<td>8 to 12</td>
<td># 6</td>
<td>7 to 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 7</td>
<td>9 to 11</td>
<td># 8</td>
<td>8 to 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 9</td>
<td>7 to 11</td>
<td># 0</td>
<td>8 to 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE-2807 MAIN BOARD

- **H12, H13 & H14 - NOT JUMPERED**
- **Fuse "FL" SA T E-2330-7**
- **Fuse "F1" 2A T E-2330-3**
- **Backgage Direction LED (ON IN REVERSE)**
- **SOS LED (ON WHEN BACKGAGE MOTOR IS ON)**
- **Backgage Dynamic Brake (ON WHEN MOTOR IS OFF)**
- **"H16" Header Keyboard**
- **"H111" Header No Jumper**
- **"H10" Header Jumpered**

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Idle Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1: Left Interlock Switch</td>
<td>Off when cover is closed</td>
</tr>
<tr>
<td>IN2: Clamp Up Limit</td>
<td>On when clamp is up</td>
</tr>
<tr>
<td>IN3: Hyd. Cylinder Up Limit</td>
<td>On when hyd. are up</td>
</tr>
<tr>
<td>IN4: Knife Up Limit</td>
<td>On when knife is up</td>
</tr>
<tr>
<td>IN5: Right Interlock Switch</td>
<td>Off when cover is closed</td>
</tr>
<tr>
<td>IN6: Knife Latch Switch</td>
<td>Off when k/l is pulled in</td>
</tr>
<tr>
<td>IN7: Not Used</td>
<td></td>
</tr>
<tr>
<td>IN8: Cut Switch</td>
<td>On when switch is pushed</td>
</tr>
<tr>
<td>IN9: Knife Down Limit</td>
<td>Off when knife is down</td>
</tr>
<tr>
<td>IN10: Not Used</td>
<td></td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Idle Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1: Hydralic Motor</td>
<td>On when motor is running</td>
</tr>
<tr>
<td>OUT2: Cut Solenoids</td>
<td>Off except for forward motion</td>
</tr>
<tr>
<td>OUT3: Not Used</td>
<td></td>
</tr>
<tr>
<td>OUT4: Unload Solenoid</td>
<td>Off when clamp is up</td>
</tr>
<tr>
<td>OUT5: Line Light</td>
<td>On when line lights are on</td>
</tr>
<tr>
<td>OUT6: Knife Latch Solenoid</td>
<td>Off when knife is up</td>
</tr>
<tr>
<td>OUT7: Cut Sw. Light</td>
<td>On when ready for cut</td>
</tr>
</tbody>
</table>
Hydraulic Motor didn’t start

1. Are F2, F6 fuses good?
 - Yes → Replace defective fuse and check tightness of holder.
 - No → Continue with the next step.

2. Does the red output led 1 lite?
 - Yes → Continue with the next step.
 - No → Is there 24 vac between wire #41 and #55 at the main board?

3. Is there 24 vac between wire #41 and #55 at the main board?
 - Yes → Replace main board EE-2807-1.
 - No → Is there 24 vac between wire #39 and #35?

4. Is there 24 vac between wire #39 and #35?
 - Yes → Test cut button/interlock switches contacts and wires #39, #40, #41.
 - No → Does the pump relay turn on?

5. Does the pump relay turn on?
 - Yes → Replace relay, see manual.
 - No → Is there 230 vac between wires 31 and 32?

6. Is there 230 vac between wires 31 and 32?
 - Yes → Replace relay, see manual.
 - No → Replace motor, see manual.

7. Does the cutter have a front plexiglass guard?
 - Yes → In the sensor data menu does RHSAFE and LHSAFE change to "1" when each respective cut button is pressed?
 - No → Replace main board EE-2807-1.

8. In the sensor data menu does RHSAFE and LHSAFE change to "1" when each respective cut button is pressed?
 - Yes → If wire #64, #54, #53 connections are good, replace cut button switches.
 - No → Replace main board EE-2807-1.

9. If wire #64, #54, #53 connections are good, replace cut button switches.
 - Yes → Replace main board EE-2807-1.
 - No → In the sensor data menu does CUTBTN change to a "1" when single cut button is pushed?

10. In the sensor data menu does CUTBTN change to a "1" when single cut button is pushed?
 - Yes → If wire connections #64 and #57 are good, replace single cut button, E-2841-2.
 - No → Replace main board EE-2807-1.

 - If wire connections #64 and #57 are good, replace single cut button, E-2841-2.
Positioning error

Test each of the choices

- Does the backgauge move smoothly when turning the rear pulley?
 - Yes: Test another choice.
 - No: Are the gib screws adjusted too tight?
 - Yes: Readjust.
 - No: Lubricate.

- Is the backgauge guide rail lubricated?
 - Yes: Adjust thrust washers for zero end play.
 - No: Check for loose or misaligned parts such as pillow blocks.

- Are the motor brushes binding in the holder?
 - Yes: Remove the bind.
 - No: Test another choice.

- Does the brake resistor measure 5 ohms?
 - Yes: Replace EE-2807-1 or repair, see Adjustment Procedure section.
 - No: Clean without chemicals.

- Is the preset wand loose or not moving through the sensor?
 - Yes: Replace EE-2807-1.
 - No: Is the preset sensor dirty?
 - Yes: Test another choice.
 - No: Is there end play in the leadscrew?
 - Yes: Test another choice.
 - No: Replace EE-2807-1.

- Does the backgauge stop with no drift after the slide guide is pressed for full speed then released?
 - Yes: Test another choice.
 - No: Replace EE-2807-1 or repair, see Adjustment Procedure section.

- Does the backgauge move smoothly when turning the rear pulley?
Clamp/Knife down

Press "clear" then press send to remove error

Is the sensor data menu is KNFUP a 1 when the knife bar is at the top stroke?
- Yes
 - Check other options
- No
 - Replace main board EE-2807-1.

Is the yellow input LED 4 lit?
- Yes
 - Replace main board EE-2807-1.
- No
 - Is the Knife up proximity red LED H?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - Is the proximiy sensor within .03", 1mm of the knife bar?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - If wire #60 connections are good replace proximity sensor, E-2204-1.

Is the yellow input LED 6 lit?
- Yes
 - Replace main board EE-2807-1.
- No
 - Is the red hyd up proximity LED lit?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - Is the hyd up proximity LED lit?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - If wire #61 connections are good replace proximity sensor, E-2204-1.

Is the yellow input LED 2 lit?
- Yes
 - Replace main board EE-2807-1.
- No
 - Is the clamp up proximity red LED lit?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - Is the actuator within .03", 1mm of the proximity sensor?
 - Yes
 - Replace main board EE-2807-1.
 - No
 - If wire #62 connections are good replace proximity sensor, E-2204-1.

Adjust

Check other options.
Clamp stuck down

Free clamp by prying up on the side of the clamp that is not holding paper. Place your foot on the manual clamp bar to prevent the clamp from bouncing up.

Suggestions to prevent this from happening again. For following items refer to the adjustment procedure section.

- Lower clamp pressure 100 to 200 psi.
- Parallel clamp to table.
- Grease clamp guides.
- Check for broken clamp return spring.
- Tell operator to cut narrow stock in center of clamp.
Slow backgauge movement to end of table

Did back gauge move to the rear after pressing "CLEAR"?

Yes

Is the preset sensor broken or loose?

Yes

Replace preset EE-1688-1.

No

Are wires #12, #18, #20 loose at the preset or the main board?

Yes

Repair connection.

No

Does the voltage change from 0vdc to 5vdc between wire #12 and #18 when blocking the preset sensor with chip board?

Yes

Replace main board EE-2807-1.

No

Replace preset EE-1688-1.

The wand must travel through sensor center and go as deep as possible without touching. The wand and sensor must not be loose.
Hydraulic up failure

Is the clamp cylinder shaft at the top of stroke (5/8" or 16mm between the round actuator disc and the bottom of the cylinder)?

In the sensor data menu is the HYDUP a 1?

Is the yellow input LED 3 lit?

Is the Hyd up proximity red LED lit?

Is the actuator disc within .03",1mm of the proximity sensor?

Adjust sensor or actuator disc.

Replace main board EE-2807-1.

Replace valve H-203-6.

If wires #63, #64 connections are good replace proximity sensor, E-2204-1

If wire #61 connections are good replace the proximity sensor, E-2204-1

Remove and test valve per adjustment procedure section.

Will adjusting the clamp up sequence valve CCW allow the clamp to go up?
Knife down failure

Did the knife move to bottom of stroke?

Yes

In the sensor data menu did the KNDWN change to a 0 when the knife was at the bottom of stroke?

Yes

Replace main board EE-2807-1

No

No

Does the yellow input LED 9 turn off when the knife bar is at the bottom of stroke?

Yes

Replace EE-2807-1

No

No

Did the knife bar move below the knife down proximity sensor at the bottom of stroke?

Yes

Check for mechanical bind in the knife bar and knife cylinder.

No

No

Can the main pressure be reset?

Yes

Replace the proximity sensor, E-2204-1

No

Adjust. See Adjustment Procedures section.

Yes

Reset to 900psi.

No

No

Check for broken cylinder bracket, dry knife guides, mechanical binds.

Is the main system pressure set to 1400 psi?

Yes

No

Is the knife down sequence set to 900psi?

Yes

Reset to 900psi.

No

Replace EE-2807-1

Did the knife bar move below the knife down proximity sensor at the bottom of stroke?
Sequence error

Repower machine. If error is repeated continue on.

Does the knife bar start down before the clamp?

- Yes
 - Does the clamp return to the top of stroke before the knife bar?
 - Yes
 - Adjust clamp reducer valve CW to increase pressure.
 - No
 - Is the clamp pressure set below 400psi?
 - Yes
 - Check for mechanical bind or too high paper lift.
 - No
 - See other choice.

- No
 - See other choice.

Is the knife down sequence pressure set below 900psi?

- Yes
 - Adjust clamp reducer valve CW to increase pressure.
- No
 - Is the clamp pressure set below 400psi?
 - Yes
 - Check for mechanical bind or too high paper lift.
 - No
 - Replace clamp up sequence valve H-203-6

Can the clamp up sequence pressure be set to 600psi? See adjustment procedure.

- No
 - Adjust
- Yes
 - Replace knife down sequence valve, H-203-7.

Can the pressure be raised to 900psi? See adjust procedure.

- No
 - See other choice.
- Yes
 - Replace clamp up sequence valve H-203-6

Check for knife bind.
Knife at both limits

In the sensor data menu did KNDWN change to a 0 when the knife bar was at the bottom of stroke? [Yes/No]

Did the yellow LED input 9 turn off? [Yes/No]

Replace main board EE-2807-1

Replace main board EE-2807-1

In the sensor data menu is the KNFUP a 1 when the knife is at the bottom of stroke? [Yes/No]

Is the yellow LED input 4 lit? [Yes/No]

Replace proximity sensor E-2204-1

Replace proximity sensor E-2204-1

Is the knife down proximity red LED turn off? [Yes/No]

Does the knife down proximity red LED turn off? [Yes/No]

If wire #56 connections are good replace proximity sensor E-2204-1

If wire #56 connections are good replace proximity sensor E-2204-1

Check for knife bar binds.

Is the knife down proximity sensor within .03", 1mm of the knife bar? [Yes/No]

Adjust

If wire #60 connections are good replace the proximity E-2204-1

Is the knife up proximity red LED lit? [Yes/No]

If wire #63, #64 connections are good replace the proximity E-2204-1

Check for knife bar binds.
Clamp down failure

Did the pump turn on?

Yes

Did the red LED output 2 lite and CUTSOL change to a 1 in the sensor data menu?

Yes

Is there 24vac between wires #42 and #35 at the main board?

Yes

Is there 24vac between wires #44 and #35 at the gray terminal strip?

Yes

Is there 24vac between wires #44 and #35 at the down coil connector?

Yes

Does the coil have magnetism? See coil magnetism adjustment procedure.

No

Replace coil, E-1069-17.

Yes

After reinstalling the valve, the cutter works, there is contamination in the fluid. Replace fluid and clean tank, strainer, magnet.

Does the removed down valve test good? See hyd valve adjustment procedures

Yes

No

Replace valve, H-203-6

No

Replace main board, EE-2807-1

Yes

Replace main board, EE-2807-1

Yes

Replace main board, EE-2807-1

Yes

See Hydraulic Motor Didn't Start flow chart

No

Replace main board, EE-2807-1

No

Check cut button/interlock switches, wire connections and see hood adjustment procedure section.

Yes

If wire #44 and #35 connections are good replace cable, EE-2769

No

Replace main board, EE-2807-1

No

Replace main board, EE-2807-1
Shorted key error

Does the console have a single beep on power up?

Yes

Does the console sound a single beep after the blue keyboard cable is unplugged and plugged in again?

No

Replace EE-2807-1

Yes

Replace the keyboard, 43002.

No

Normal operation.

No

After the clear is pressed does the backgauge move to the fwd or rev limit?

Yes

Disconnect keyboard cable just after the clear key is pressed.

No

Does the backgauge move as before?

Yes

Replace the EE-2807-1

No

Replace the keyboard, 43002.
“Encoder wires 9 and 10 are reversed” or “Backgauge direction reversed”

Typically errors occur after a table out installation

- Is wire #17 connected to H2-1 and wire #19 connected to H2-2 on main board?
 - Yes: Check other choice.
 - No: Wire correctly.

- Is black motor wire connected to blue cable wire and red motor wire connected to brown cable wire?
 - Yes: Check other choice.
 - No: Wire correctly.
Knife latch failure 1

- Did pump turn on?
 - Yes: See Hydraulic Motor Didn't Start flow chart.
 - No:
 - Yes: Does the pin disengage from the knife bar?
 - No:
 - Yes: When the knife bar is at top of stroke, is there .03", 1mm, clearance from pin to knife bar? See adjustment procedure.
 - No: Adjust bracket.

- In the sensor data menu does the KNFLAT change to a 0 during a stroke?
 - Yes: Replace main board, EE-280-17.
 - No:
 - Yes: Is red led output 6 turning on?
 - No:
 - Yes: During a cut is there 24 vac at solenoid wires #35, #47?
 - No: Replace solenoid, E-974-2.

- Does the yellow input LED 6 turn off?
 - Yes: Replace the main board EE-2807-1.
 - No:
 - Yes: During a cut is there 24 vac at main board wires #35, #47?
 - No: Replace main board, EE-2807-1.

- If wire #59 connections are good replace proximity sensor, E-2204-1.
Knife latch failure 0

Is the knife latch pin under the knife bar when the knife bar is at the top of stroke?

Yes

In the sensor data menu is the KNFLAT a 1?

Yes

Replace main board, EE-2807-1

No

Replace spring, 41117

Yes

Is the return spring broken?

No

Check for binds

Is the solenoid energized?

Yes

Replace main board, EE-2807-1

No

Is the yellow input LED 6 lit?

Yes

Replace main board, EE-2807-1

No

If wire #59 connections are good, replace the proximity sensor, E-2204-1

Is the knife latch proximity red LED lit?

Yes

If wire #63, #64 connections are good, replace proximity sensor, E-2204-1

No

Is the latch lever within .03, 1mm of the proximity sensor?

Yes

See knife latch adjustment procedures

No
Hydraulic latch error 1

Did the pump turn on?

Yes

Does wire #39 have a good connection at main board header and the gray terminal strip?

Yes

Does wire #35 have a good connection at main board H7-4 header and at the gray terminal strip?

Yes

Does jumper H-10 on the main board have a good connection?

Yes

Replace main circuit board, EE-2807-1

No

See Hydraulic Motor Didn’t start flow chart

Repair

Repair

Repair